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Abstract

Bandwidth selection is of great importance when statisticians want to estimate the 
functional forms of a data set by using nonparametric method. Bandwidth can be 
selected by several methods, but least squares cross-validation method may provide 
optimal bandwidth. This study used nonparametric kernel density estimation approach 
to estimate the function form of consumption of the household and computing an 
optimal bandwidth parameter, a bias-variance trade –off by using the least squares 
cross-validation data –driven automatic selection method. The study used National 
Panel Survey data wave 4 (2014/2015) in Tanzania with 3,352 households based 
on stratified, multi-stage cluster sample design to estimate the function form of the 
households’ food shares. The results revealed that, optimal bandwidth for Gaussian 
and Epanechnikov kernel functions;- ℎ𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝐿𝑆𝐶𝑉 = 0.087, factor = 0.935 for male/
female headed households, ℎ𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝐿𝑆𝐶𝑉 = 0.609, 𝑠𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 = 0.708 for urban/rural 
households, ℎ𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝐿𝑆𝐶𝑉 = 0.454, 𝑓𝑎𝑐𝑡𝑜𝑟 = 0.668 for households’ sizes and ℎ𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝐿𝑆𝐶𝑉 = 
0.976, 𝑓𝑎𝑐𝑡𝑜𝑟 = 0.604 for adult equivalent households. MISE and ISE used as kernel 
functions criteria, depicted low value resulting to consistency and efficiency of ℎ𝐿𝑆𝐶𝑉. 
The use of nonparametric kernel density estimation method and Gaussian kernel 
functions, or Epanechnikov kernel function is recommended because it has fewer 
assumptions. Therefore, the findings are of greater value for mathematicians and 
statisticians.

Keywords: Non-parametric Kernel Density, LSCV-automatic data-driven bandwidth 
selection method, Gaussian Kernel function, Epanechnikov Kernel function, 
MISE, ISE.

1.0 Introduction
Non-parametric density estimation (also known as non-parametric smoothing) is a 
statistical technique that does not require prior assumptions about the functional form of 
the model being estimated. Instead, the method allows the data to determine the structure 
of the model. Non-parametric density estimation is useful for assessing multimodality, 
skewness, and other distributional characteristics (Silverman, 1986). It is also applied in 
Bayesian posterior summarization, classification, and discriminant analysis (Simonoff, 
1996). Additionally, it has proven valuable in Monte Carlo computational methods, such 
as bootstrap smoothing and particle filtering (Doucet et al., 2001). The appeal of non- 

1 Assistant Lecturer, Tanzania Public Service College- Dar es Salaam Campus      peter.kanyelele@tpsc.go.tz



62 Journal of Public Sector Management, Vol. No. 8, 2024

Peter Aron Kanyelele

parametric methods lies in their flexibility, as they are free from the parametric constraints 
typically imposed on data-generating processes.

Over the past few decades, non-parametric techniques have gained significant attention 
from statisticians and mathematicians (Hardle et al., 2005). However, despite the 
extensive literature on the subject, several challenges remain in the implementation and 
performance of kernel density estimators. First, the most commonly used data-driven 
bandwidth selection techniques, including the plug-in method (Sheather et al., 1991; Jones 
et al., 1996), are influenced by the normal reference rule. While plug-in estimators perform 
well under approximate normality, reliance on the normal reference rule contradicts the 
original motivation for using non-parametric methods. Second, the widely used Gaussian 
kernel density estimator lacks local adaptability, making it highly sensitive to outliers, 
prone to producing spurious bumps, and susceptible to bias—often flattening peaks and 
valleys in the density estimation (Marron et al., 1992). Third, most kernel estimators suffer 
from boundary bias, particularly when data are nonnegative, as traditional kernels do not 
account for domain-specific knowledge (Park et al., 2003). These issues have been mitigated 
to some extent through the development of more advanced kernel density estimation 
techniques. The first kernel density estimation method, introduced by Rosenblatt (1956), 
aimed to relax the parametric assumptions of discriminant analysis.

Two key developments have contributed to the widespread adoption of non-parametric 
methods in economics, econometrics, statistics, and mathematics. First, advances in 
computing power have made these methods feasible for practical applications. Without 
efficient computational resources and optimized algorithms, non-parametric estimation 
would be impractical. Second, the availability of statistical software packages, such as 
the “np” package in R (Hayfield & Racine, 2008), has further facilitated their use. The 
combination of powerful computing and accessible software has significantly popularized 
non-parametric methods in econometrics and economics.

In this study, we focus on non-parametric kernel density estimation methods that are 
robust to non-normal distributions, contaminated data, outliers, and leverage points. The 
primary objective is to estimate the density function of food shares among households 
in Tanzania using kernel density estimation with an automatic data-driven bandwidth 
selection method. Specifically, the study aims to estimate the density function of food 
shares among Tanzanian households and to examine the influence of gender, location, and 
household size on food shares in Tanzania.

The performance of the kernel density estimator (KDE) will be evaluated using the following 
criteria: Mean Square Error (MSE), Weighted Mean Absolute Error (MAE), Standard Errors 
(SE), Coefficients of Determination (R-squared), Mean Absolute Percentage Error (MAPE), 
Integrated Square Errors (ISE), Mean Integrated Square Errors (MISE), and Integrated 
Mean Square Errors (IMSE).

In recent years, the literature on non-parametric density estimation methods has grown 
rapidly, offering solutions to problems associated with parametric regression models. 
Unlike parametric models, non-parametric density estimation techniques do not require 
researchers to assume a specific functional form between the dependent and explanatory 
variables. Instead, the data determine the functional form, eliminating arbitrary model 
constraints. However, a major challenge in non-parametric density estimation is selecting 
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an optimal bandwidth that balances bias and variance while minimizing the integrated 
squared errors (ISE) or mean integrated squared errors (MISE).

Various bandwidth selection methods have been proposed, including “quick and dirty” 
approaches such as the rule of thumb (Deheuvels, 1977), maximal smoothing (Terrell, 
1990), biased cross-validation (Scott & Terrell, 1985), smoothed cross-validation (Hall 
et al., 1992), Sheather and Jones’ (1991) factorized smoothed cross-validation, one-sided 
cross-validation, modified cross-validation, and the bootstrap bandwidth method (Taylor, 
1989). However, selecting an optimal bandwidth remains a critical challenge in obtaining 
accurate density estimates (Harpole et al., 2014).

This paper employs a non-parametric kernel density estimation method combined with 
the least squares cross-validation data-driven bandwidth selection technique to analyze 
the NPS4 (2014/2015) dataset. The study aims to estimate the functional form of 
household food consumption, an area that has not been extensively explored. Household 
food consumption is analyzed in relation to factors such as male- vs. female-headed 
households, urban vs. rural households, household size, and adult-equivalent household 
measures. Both the Gaussian and Epanechnikov kernel functions are used to estimate the 
density functions of food shares.

2.0 Literature Review
The idea of bandwidth (smoothing parameter) methods has been discussed by many 
scholars; including Chen (2018) pointed out, that the problem of smoothing parameter 
techniques depends on the situation in which the data are serially dependent on time 
series and proposed localized bandwidth estimators. Gramacki (2018) discovered a new 
theorem deriving the asymptotic theory for linear combinations of smoothing parameters 
obtained from different areas. Heidenreich et al., (2013) reviewed different methods of 
smoothing parameters (bandwidths) techniques and compared the methods by simulation. 
They found out that simple plug-in and cross-validation methods produce bandwidths with 
quite unstable performance. Jones et al. (1996) proposed a plug-in-method, this method 
depicted undesirable weakness, it is not a fully automatic method, because one needs 
to choose an initial value of bandwidth (h) to estimate the function. (Silverman, 1986), 
proposed rule- of-thumb. This method is inappropriate as it over smooth data. Extreme 
over-smoothing leads to an unimodal estimate which completely obscures the true density 
nature of the underlying distribution. Due to the lack of stability of these methods, different 
bandwidth techniques were introduced, among them is classical cross-validation, a fully 
automatic data-driven method of selecting the smoothing parameter (Rudemo, 1982; 
Stone, 1984; Bowman, 1984). Modified rule-of-thumb is probably the most popular and 
biased cross- validation method to select the smoothing parameter (Scott & Terrell, 1987; 
Park et al., 2003; Sheather & Jones, 1991; Hall et al., 1992). Also, the bootstrap methods of 
Taylor (1989) as well as all its modifications by Cai et al. (2009).

Based on some literature reviews as mentioned above, it has been observed that there is 
a vast and rapid increase in the studies that are using nonparametric density estimation 
methods in econometric regression methods and semi-parametric regression methods for 
data analysis; such as Lin and Carrol (2000), Wilcox (2004), Ullah et al. (2005), Li and 
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Racine (2004), Henderson et al. (2006), but which an appropriate approaches, an optimal 
smoothing parameter and density estimation function most suitable to analyses and 
estimate the households consumption function form using least squares cross-validation 
method, is still an open question. To answer such a question, we adopted nonparametric 
kernel density estimation, LSCV data-driven automatic method, this method is based on 
the principles of selecting a bandwidth that minimizes the integrated squared error of 
the resulting estimate, and it provides an optimal bandwidth. Gaussian kernel function or 
Epanechnikov kernel function to estimate consumption functional form of food shares of 
households in Tanzania using National Panel Survey wave four (NPS4).

3.0 Methodology
This study focused on two nonparametric kernel density functions: The Gaussian Kernel  
and the Epanechnikov Kernel, with least squares cross-validation (LSCV) used as an 
automatic, data-driven method for bandwidth selection. The performance of these kernel 
density estimation functions was evaluated using mean integrated square error (MISE) and 
integrated square error (ISE), as well as coefficients of determination (R²). Additionally, the 
statistical significance levels of explanatory variables were determined using bootstrapping, 
following the methods proposed by Racine (1997).

Given a dataset of independent and identically distributed samples from an unknown 
univariate distribution with density function, the kernel density estimator provided an 
estimate of the probability distribution by averaging over a localized region determined 
by a bandwidth parameter. The kernel function must satisfy key properties, including 
normalization, symmetry, and finite second moments. The least squares cross-validation 
(LSCV) method, was used to minimize the integrated square error (ISE). The method 
optimizes the bandwidth selection process, ensuring that the kernel density estimator 
provides an accurate representation of the underlying distribution. Minimizing the LSCV 
function helped achieve the lowest mean integrated square error (MISE), leading to an 
optimal bandwidth choice. This study was conducted in Tanzania, chosen for its diverse 
analytical units (households). The National Panel Survey Wave 4 (NPS4, 2014-2015) 
explicitly defines three analytical strata: Dar es Salaam, urban and rural areas in Mainland 
Tanzania, and urban and rural areas in Zanzibar. Within each stratum, clusters were 
randomly selected as primary sampling units, with selection probability proportional to 
population size. In urban areas, clusters corresponded to census enumeration areas, while 
in rural areas, clusters were equivalent to villages.

The NPS4 (2014-2015) dataset was used, consisting of 3,352 households and 419 clusters. 
The survey employed a stratified, multi-stage cluster sampling design, drawing from the 
2002 Population and Housing Census (PHC). The sample design maintained the three 
analytical strata, ensuring proportional representation across Tanzania.

This study relied on secondary data from NPS4 (2014-2015), a national longitudinal survey 
conducted by the National Bureau of Statistics (NBS) in collaboration with the Office of the 
Chief Government Statistician – Zanzibar. Data collection spanned 13 months, from October 
2014 to November 2015. The NPS aims to track national and international development 
progress, analyze poverty dynamics, and evaluate policy impacts.
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4.0 Data Analysis, Presentation, and Discussion of the Findings
This part presents the study’s results with their respective discussions based on the 
objective of the study which was first, to estimate the density functional form of food 
shares of households in Tanzania, second, to find out the influence of gender, location, and 
households size of food consumption in Tanzania. This section presents data estimation 
and analysis, sample size, estimation type, kernel density estimation, and bandwidth 
selection. We estimated the total household consumption function form of food shares 
by using the nonparametric kernel density estimation method. Furthermore, we adopted 
Gaussian kernel function and Epanechnikov kernel function to achieve study objectives. 
We make the frequency used assumptions that the bandwidths (smoothing parameters) 
for the variables can differ between variables, but are constant over the domain of each 
explanatory variable. Then we used LSCV as a data-driven automatic bandwidths selection 
method which trade-off between bias and variance.

4.1 Presentation of the Results
All estimations, calculations, and presentation of results were conducted and written 
within the statistical software environment “R” and “np” packages. The households’ 
consumption data contains (3,344 households’ consumptions of food shares replications, 
and 8 variables)

Table 1: Least Squares Cross-Validation data-driven bandwidths summary of food  shares in 
Tanzania.

Variables Gaussian kernel function Epanechnikov kernel function

Bandwidth Scale factor Bandwidth Scale factor

Region 0.763 0.534 0.763 0.534

District 0.988 0.571 0.988 0.571

Ward 0.445 0.045 0.442 0.044

Household size 0.454 0.668 0.454 0.668

Male/Female headed 0.087 0.935 0.087 0.935

Urban or Rural 0.609 0.708 0.609 0.708

Adult Equivalent 0.967 0.605 0.968 0.605

Year 0.133 0.405 0.132 0.404

Source: Field data (2024)
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Table 2: Criteria of nonparametric kernel density estimation function of food shares in 
Tanzania

Gaussian kernel Function Epanechnikov kernel Function

MSE 0.003 0.002

SE 0.053 0.059

R-squared 0.888 0.854

MAE 0.024 0.024

MAPE 0.039 0.039

ISE 0.003 0.004

MISE 0.004 0.005

Source: Field data (2024)

Table 3: Individual Significance Tests of variables of food shares in Tanzania

                                           Gaussian kernel Function Epanechnikov kernel Function

Variable P-Value P-Value

Region 0.000 0.000

District 0.000 0.000

Ward 0.000 0.000

Household size 0.852 0.852

Male/Female headed 0.311 0.311

Urban or Rural 0.000 0.000

Adult Equivalent 0.995 0.995

Year 0.000 0.000

Source: Field data (2024)

Table 3 shows significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1. The above results 
depict that the region, district, ward, household weights, education, urb an/rural, and 
year (time) variables are statistically significant (at 0 % significant level), fe male-headed 
households, household size, and adult equivalent variables are not statisticall y significant 
for both Gaussian kernel and Epanechnikov kernel function. According to th e bootstrap 
significance test proposed by Racine (1997), and Hart and Li (2006), Urban/ru ral and 
female-headed household variables have a greater effect on the dependent variable (Food 
shares). Households size and adult variables have less effect on the dependent varia ble.

4.2 Estimated functional form of food shares in Tanzania
The figures below are the estimated function form of food shares in Tanzania using nonpa 
rametric kernel density estimation for Gaussian kernel function and Epanechnikov kernel 
density function together with LSCV driven-data automatic bandwidth selection method p 
resent in computer package R together with “np” package.
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Figure 1: Nonparametric estimation of food shares for male/female-headed households by 
using Gaussian kernel density function and Epanechnikov kernel density function

Source: Field Data (2024)

Figure 1 shows the result of nonparametric kernel density estimation (an automatic data- 
driven bandwidth-the least-squares cross-validation data-driven bandwidth (LSCV (h)) = 
0.087, scale factor 0.935 and Gaussian kernel density and Epanechnikov kernel density, 
estimated via 3344 replications). The function form depicts that food shares for male- 
headed households are higher than for female-headed households.

Figure 2: Nonparametric estimation of food shares for urban/rural households by using 
Gaussian kernel Density function and Epanechnikov kernel density function.

Source: Field Data (2024)
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Figure 2 shows the results of nonparametric kernel density estimation (with a data-driven 
bandwidth-the least-squares cross-validation bandwidth (LSCV (h)) = 0.609 and Scale 
factor = 0.708, estimated via 3344 replications). The function form depicts that food shares 
for urban households are higher than for rural households and also, as the urban/rural 
dwellers decrease, the food shares increase.

Figure 3: Nonparametric estimation of food shares and households size dwellings by using 
Gaussian kernel density function and Epanechnikov kernel density function.

Source: Field Data (2024)

Figure 3 shows the results of nonparametric kernel density estimation (with a data-driven 
bandwidth-the least-squares cross-validation bandwidth (LSCV (h)) = 0.454 and Scale 
Factor = 0.668, estimated via 3344 replications). The function form depicts that food 
shares for household size increases as the number of dwellers decreases and also, as the 
household size decreases, the food shares increases.

Figure 4: Nonparametric estimation of food shares and adult equivalents dwellings by using 
Gaussian and Epanechnikov kernel density function

Source: Field Data (2024)
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Figure 4 shows the results of nonparametric kernel density estimation (with a data-driven 
bandwidth-the least-squares cross-validation bandwidth (LSCV (h)) = 0.967 and Scale 
factor = 0.604, estimated via 3344 bootstrap replications). The function form depicts that 
food shares for the adult equivalent increases as the number of dwellers decreases.

4.3 Discussion of the findings
The objective of the study was to estimate the density function form of food shares of 
households in Tanzania and to find out the influence of gender, location and households 
size of food consumption in Tanzania using the least square cross-validation bandwidth 
selection method across Gaussian and Epanechnikov kernel functions. The LSCV depict 
that was efficient and optimal for density function form of food shares for male/female 
headed household, urban/rural household, followed by household size (dwellers) and 
adult equivalent household. The density function of food shares of male headed household 
was high than female headed household, urban household depicted high food shares in 
relation to rural household, and food shares increases as household sizes increases. LSCV 
was optimal because the MISE and ISE values were low resulting in efficiency and bias- 
variance trade-off. The LSCV bandwidth had a high convergence rate and consistency 
resulting in an efficiency density function. The Mean Square Error (MSE), Weighted Mean 
Absolute Error (MAE), Standard Errors (SE), Coefficients of determination (R-squared), 
Mean Absolute Percentage Error (MAPE), and Integrated Mean Square Errors (IMSE) 
depicted high variance and low bias resulting in low efficiency.

5.0 Conclusion and Recommendations
5.1 Conclusion
The least-square cross-validation data-driven automatic bandwidth selection method was 
efficient and optimal for both Gaussian and Epanechnikov kernel functions. The density 
function form of consumption of food shares of male/female-headed households, urban/
rural households, household size/dwellers, and adult equivalent households was consistent 
and efficient. Food shares were significantly different for male/female households, urban/
rural areas households, household size, and adult equivalent households. Hence, least 
square cross-validation as an automatic data-driven bandwidth selection method is the 
optimal, robust, and universal method for density smoothing parameter selection.

5.2 Recommendations
Key findings suggest that using a nonparametric kernel density estimation method with 
least squares cross-validation (LSCV) data-driven bandwidth selection method together 
with Gaussian kernel function, or Epanechnikov kernel function, the food shares for male- 
headed household is higher compared with the female-headed household, urban household 
revealed higher food shares than rural household, food shares for household sizes increases 
as the number of dwellers increases and the food shares for adult equivalents of household 
is optimum high as the number of dwellers increases..

Based on the paper’s findings, we recommend the use of a nonparametric kernel density 
estimation method and Gaussian kernel function or Epanechnikov kernel function 
which considerably has fewer assumptions and does not involve model specification of 
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an unsuitable function form for relationship between an independent variable and the 
dependent variable. However, currently, nonparametric kernel density estimation methods 
are not used rarely, because need computational ability. Also, it is recommended that, the 
selection of bandwidth (smoothing, or window parameter) that trade-off between variance 
and bias of an estimator remain an arbitrary investigator’s ability or depend on a particular 
situation, sample size of data sets and true density.

5.3 Area for further research
This paper open room and provide a prospect way for further study on application of 
nonparametric kernel density estimation techniques for consumption data analysis.

Consequently, this paper has given a room for further study on various applications 
of nonparametric density estimation methods in cross-section data, unbalanced data, 
time series data, panel data, and longitudinal data in solving statistical, economical and 
econometric problems and real situations, since the current paper came up with findings 
from only one area of analyzing consumption of food shares data using nonparametric 
kernel density estimation together with LSCV data-driven bandwidth selection method.
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